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Abstract

In this paper, we present a novel strategy for incorporating massive parallelism into the

solution of Maxwell’s equations using finite-difference time-domain methods. In a departure

from previous techniques wherein spatial parallelism is used, our approach exploits massive

temporal parallelism by computing all of the time steps in parallel. Furthermore, in contrast

to other methods which appear to concentrate on explicit schemes, our strategy uses the im-

plicit Crank-Nicolson technique which provides superior numerical properties. We show that

the use of temporal parallelism results in algorithms which offer a massive degree of coarse

grain parallelism with minimum communication and synchronization requirements. Due to

these features, the time-parallel algorithms are particularly suitable for implementation on

emerging massively parallel MIMD architectures. The methodology is applied to a circular

cylindrical configuration – which serves as a testbed problem for the approach – to demon-

strate the massive parallelism that can be exploited. We also discuss the generalization of

the methodology for more complex problems.
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1 Introduction

The application of finite-difference and finite-volume time-domain (FDTD and FV’I’D) meth-

ods to the solution of Maxwell’s equations has been encouraged by increased efforts to model

elect rically large and complex radiators and scatterers. However, because of the intensive

computation and storage associated with these techniques, their practical implementation

for very large problems presents some challenges. In Miller’s survey of computational elec-

tromagnetic (CEM) techniques [1], it is suggested that a key solution to the computational

power and storage requirement bottlenecks is the exploitation of a massive degree of par-

allelism by implementing CEM FDTD algorithms on parallel architectures. However, in

order to fully exploit the computing power oRered by available parallel platforms, existing

algorithms must be reexamined, with a focus on their efficiency for parallel implementation.

Eventually, new algorithms may have to be developed that, from the onset, take a greater

advantage of the available massive parallelism.

An emerging class of massively parallel multiple instruction multiple data (MIMD) super-

computers, such as Intel’s Delta and Paragon and CRAY’S T3D, appears to set the current

and future trend in massively parallel computing technology. The very large number of

vector processors employed in these supercomputers  couples the high level, coarse grain par-

allelism of the MIMD architecture with a lower level vector processing capability to provide

an impressive computational throughput. The main limitation of these architectures lies in
,1 “

their rather limited communication structure (mesh for Delta and T3D). This feature makes

them most suitable for algorithms which possess a high degree of coarse grain parallelism,

require limited communication and synchronization, and involve basic operations (or algo-

rithmic processes) that can be efficiently vectorized. The algorithms presented in this paper

have been developed based upon this model of computation and, as such, are highly eflicient

for implementation on this class of massively parallel MIMD supercomputers.
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1.1 Background of FDTD CEM

FDTD and FVTD techniques are generally derived by approximating derivatives in Max-

well’s time-domain coupled partial differential equations (PDEs) using finite differences. The

resulting algebraic equations are then used to track the evolution of the fields in a region

of space using time-stepping procedures. A number of such schemes [2]-[6] have been de-

veloped and used in CEM, perhaps the most popular of which was originally proposed by

Yee [2] and later developed by others [3, 4]. The majority of these techniques are explicit

and require a matrix-vector multiplication, wherein the matrices are highly sparse, at each

time step. This fact suggests that they offer a high degree of spatial parallelism - the ex-

ploitation of parallelism at the computation of each time step - and therefore a considerable

amount of work has been devoted to the space-parallel implementation of several FDTD

methods. However, such a parallelism is rather fine grain and, due to communication and

synchronization requirements, it can not be efficiently exploited by massively parallel MIMD

architectures. In fact, practical implementations of Yet’s algorithm on computers such as

the Hypercube [7, 8] and Transputer [9] clearly show that computational spcedup  is limited

since only a few processors can be efficiently employed. In contrast, these methods are highly

suitable for vector processing, and as such may be efficiently computed using a high degree of

vectorization but a limited degree of parallelism. The results reported in [6] and [1 O] appear

to support the optimality of such a strategy.
●1. With the exception of [11] which illustrates the application of the Crank-Nicolson (CN)

method to the scalar wave equation, it seems that less attention has been focussed on the

application of implicit [12] methods to CEM problems. These methods offer the advantage

of unconditional stability, which often reduces the number of time steps required. However,

because implicit techniques require a linear system solution at each time step, it has generally

been assumed that they are inefficient for parallel computation (see Section 2 for a more

detailed discussion).
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1.2 Time-Parallel Algorithm

In this paper, we propose a novel computational strategy which uses time-parallelism - the

exploitation of parallelism in the computation of all the time steps – in the CN solution

of the scalar wave equation. The resulting time-parallel algorithm offers a high degree of

coarse grain parallelism with minimum communication and synchronization requirements,

making it highly efficient for implementation on massively parallel MIMD architectures.

The application of our time-parallel computing approach to determine the electromagnetic

behavior of fields near circular cylindrical geometries clearly reveals the massive temporal

parallelism which can be efficiently exploited in the computation. It is further shown that,

with the availability of a larger number of processors, spatial parallelism can be also exploited

in the computation, resulting in a time- and space-parallel algorithm which remains highly

coarse grain with a simple communication structure.

Although our approach is not yet as general as more established methods, we believe

that our work paves the way for a new direction in massively parallel CEM. In this sense,

this paper mainly presents the basic idea underlying the time-parallel computing approach

along with a discussion on its efficient applicability by considering a representative problem.

However, the results of this paper provide a framework for further research work on the

application of this strategy to a wider class of CEM problems.

This paper is organized as follows. Section 2 reviews some fundamental ideas relating to
●1 the parallel solution of time-dependent PDEs and introduces the underlying concepts behind

time-parallel computation. In Section 3, the algorithm is applied to the circular cylinder.

The performance of the time-parallel algorithm with respect to the best sequential explicit

and implicit methods for the same cylinder problem is analyzed in Section 4. Generalization

of the time-parallel computing approach is discussed in Section 5. Finally, Section 6 provides

some concluding remarks.

4
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2 Time-Parallel Algorithm fc)r FDTD CEM

2.1 Parallel Solution of Time-Dependent PDEs

The computational basis for the implementation of the time-parallel algorithm is the time-

dependent form of Maxwell’s coupled PDEs. For homogeneous, isotropic materials, these

equations can be written as two decoupled second-order wave equations which assume the

form

i12z
-&F =  c2v217

azd—— =
/)t2 c2v217 (2.1)

.
where V2 is the Laplace operator, c is the speed of light, and E and H represent the electric

and magnetic field intensities, respectively. Depending on the problem geometry, a set of

scalar hyperbolic equations can be selected from Eq. (2.1). These equations can be expressed

in a general form as
82+
~ = V2+ + g(~, t) ?Efl, o< t<?’ (2.2)

where 0 is a bounded domain with boundary 0’, g(~, t) indicates a time and space depen-

dent source term, and where the initial and boundary conditions are specified. Using finite

difference approximations for the derivatives results in a general discretized form of Eq. (2.2)

which may be written as

J *
A@(~+l) = @@)+ c@~-1) +  f(~+l) l<m<M–1 (2.3)

where +(~) is the approximate solution at the mth time step, At is the time step size, and

M = T/At. The term ~1~+1) results from the discretization of g(F, t) in time and space,

and $(o) and ~(l) are the given initial conditions. In addition, we will use the symbol N

to represent the size of the spatial grid. The specific structure of the matrices A, B, and

C and the computation of ~(~~1) depend upon the solution method as well as the time

and space discretization strategies employed. Eq, (2.3) provides a basis for discussion of the

exploitation of time-parallelism in FDTD approximations to the hyperbolic wave equation.
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Although most of the current research on developing parallel techniques for solution of

time-dependent PDEs appears to concentrate on parabolic equations, many of the techniques

developed can be extended to the solution of hyperbolic equations. Much of this work is

motivated by three widely acknowledged observations (see for example [13]- [1 5]) regarding

the efficiency of time-stepping methods for parallel computation:

1.

2.

3.

Explicit methods, while limited in their range of stability, are highly efficient for parallel

and/or vector processing since the computation at each time step mainly involves a

matrix-vector multiplication.

Implicit and CN methods, despite their superior numerical properties, are not efiicient

for parallel and/or vector processing since at each time step a linear system solution is

required.

The implementation of time-stepping methods is generally assumed to be strictly se-

quential in time, implying that the solution for time step m + 1 can not be obtained

without first computing the solution for step m.

The first observation has motivated the development of new explicit methods which offer

improved numerical properties while preserving the efficiency for parallel/vector computation

[16, 17]. The second observation has resulted in new techniques which improve the efficiency

of implicit methods for parallel computation while preserving their numerical properties
1 “ [14, 18]. However, these algorithms can be classified as space-parallel since they attempt to

parallelize  the computation at each time-step while the overall computation remains strictly

sequential in time. Finally, the third observation has motivated the investigation of new it-

erative techniques to increase parallelism in time [19] -[24]. However, the resulting algorithms

achieve a rather limited temporal parallelism. In fact, Womble [21] supports the assessment

of [25] wherein simultaneous solution for all time steps is not considered feasible.

However, we have recently shown that, for a wide class of time-dependent PDEs, the

computation of time-stepping methods can be fully parallelized  in time, leading to a massive

degree of temporal parallelism in the computation [26] -[28]. The practical application of

6
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the time-parallel algorithm to a simple problem (a two dimensional heat equation) on Intel’s

Touchstone Delta has shown that linear and even super-linear speedup can be achieved by

using a very large number of processors (of the order of 102) [29]. In the following we discuss

the implementation of the time-parallel algorithm to the CN solution of Eq. (2.2).

2.2 Temporal Parallelism

To motivate the idea of time-parallelism, notice that Eq. (2.3) simply represents a Second-

Order Inhomogeneous Linear Recursion (SOILR) which can be cast into a first-order one.

The solution of such recurrences can be fully parallelized and computed in O(log M) by using

the Recursive Doubling Algorithm (RI)A) [30] or Cyclic Reduction Algorithm (CRA) [31].

Unfortunately, such an approach is not computatiomd~y  practical since both RDA and CRA

compute powers and products of the matrices in l~q. (2,3), resulting in increasingly dense and

ultimately full matrices. For a three dimensional problem, this will involve the multiplication

of dense N3 
x N3 matrices with a computation complexity of O(N9)! Even if the computation

is fully parallelized in time, the cost of one such matrix-matrix multiplication alone would

be much greater than the cost of any serial algorithm. Nevertheless, this observation clearly

indicates that, insofar as the data dependency in the computation is concerned, the time-

stepping procedures can be fully parallelized  in time.

Motivated by this observation, we have developed a technique which allows the eflcient

time-parallelization of time-stepping methods, leading to a highly practical approach for.
J

massively parallel computation. To describe this technique, consider the CN method for

solution of Eq. (2.2). In this case, Eq. (2.3) is written as

(1 - crM)@~+’J = 21@(~J – (1 – ~~)+(m-l) + ~(rn+l) l<rn < M - 1 (2.4)

where J is the unit matrix, a is a constant, and M is the matrix arising from the discretization

of the Laplace operator. The source vector ~(’’’+1) = ~[9(~+1) +g(m-l)],  where <is a constant,

represents the discretized source term in Eq. (2.2). Now, let the Eigenvalue/Eigenvector (EE)

decomposition of the nonsingular matrix M be given by

M = @A~-”l (2.5)

7



where @ is the set of eigenvectors and A is a diagonal matrix representing the set of eigenval-

ues of M. Substituting Eq. (2.5) into Eq. (2.4) and taking @ and e-l outside the parentheses

gives the expression

Multiplying both sides of Eq. (2.6) by the nonsingular matrix @-l, we obtain

(1 – aA)@@m+l)  = 2NY1@m) – (1 – aA)&@(m-’) + W’j(m+’l. (2.7)

Defining a diagonal matrix S = (1 – aA)-l and the vectors ~(m) = ~-l~(m)  and ~(m) =

SC3-l~(m) allows us to write Eq. (2.7) as

J(m+l) = 2SJ(m) – J(m-1) + f(m+l). (2.8)

In contrast to Eq. (2.4), Eq. (2.8) is diagonalized and can therefore be efficiently solved

in parallel using RDA or CRA. For two and three dimensional problems, Eq, (2.8) can be

computed in O(IV2 log M) and 0(IV3 log &f) by using 0(A4) processors.

2.3 Structure of the Time-Parallel Algorithm

To facilitate the discussion of the time-parallel algorithm, we subdivide it into four steps

as illustrated in Figure 1. Step 1 involves determining the EE decomposition of the matrix

M and forming the matrix S. The source vectors f(m) are computed and multiplied by

Se-l in Step 2 to obtain the vectors ~(m). The parallel solution of the SOILR in Eq. (2.8)

is accomplished in Step 3. Finally, the solution vectors ~(m) are obtained in Step 4 by

performing the matrix-vector multiplication ~~(m).

Several key issues relating to these steps must be addressed before applying the approach

to an example problem. To begin, since the computation in Step 1 typically only generates @

and A, the multiplication by ~-1 in Step 2 involves a linear system solution at each time step.

However, if ~-1 can be obtained explicitly, then Step 2 becomes a sequence of matrix-vector

multiplications. Determination of ~- 1 is simply performed if M is symmetric since E)- 1 = (3T

(where T indicates transpose). If M is nonsyrnmetric, the fact that MT = (6)-1 )TA@~

8
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suggests that the matrix 0-1 can be obtained by computing the EE decomposition of MT

in Step 1. This can be performed in parallel with the EE decomposition of M without

increasing the overall computational complexity, Because the computation in Step 1 is space

dependent, it needs to be performed only once for a given problem geometry.

The transformations in both Step 2 and Step 4 are completely decoupled and can be

performed in parallel with no communication among processors. Assuming O(M) processors

are available, each of these steps requires a complexity of 0(1) in time and O(K) in space –

where K denotes the cost of a matrix-vector multiplication. The communication required in

the computation of Step 3 has a rather simple structure and can be efficiently implemented on

MIMD parallel architectures since it involves the exchange of large vectors among processors.

For practical values of M and N and for most cases, the computational cost of Step 3 is

much less than that of Steps 2 and 4 (see for example Section 3). This implies that the

overall complexity of the time-parallel algc)rithm is dominated by the computations of Steps

2 and 4 which can be fully parallelized in time. This also illustrates the highly decoupled

structure, coarse grain size, and vector nature of the scheme.

These features of the time-parallel algorithm have motivated us to identify the class of

problems to which the scheme may be eflciently applied. Two key requirements for the

efficient application of the method are:

1. an efficient scheme for determination of the eigenpairs of M, and
●$

2. an efficient scheme for the matrix-vector multiplications in Steps 2 and 4.

The second issue is particularly important since multiplication of a dense matrix by a vector

leads to a computational cost of 0(N4)  and 0(N6)  for two and three dimensional problems

respectively. This fact, coupled with the first issue, motivates us to exploit the sparse

structure of M and use factored forms of O and El-l to increase the ef%ciency of these steps.

Taking into account these two issues, our analysis indicates that, for a class of problems,

the

the

time-parallel algorithm can be readily  applied with an optimal efficiency. In these cases,

EE decomposition of M can be computed efficiently with a high degree of parallelism.

9
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Furthermore, the matrix of eigenvectors can be obtained as a product of highly sparse ma-

trices which reduces the complexity of the matrix-vector multiplication. In order to further

clarify the implications of these two issues, we first consider the application of the time-

parallel algorithm to a specific problem. Generalization of the time-parallel algorithm is

discussed in Section 5.

2.4 Absorbing Boundary Condition.

For many problems, particularly enclosed problems involving resonant cavities or wave-

guiding structures, the time-parallel algorithm may be readily applied since typically either

a Dirichlet or Neumann condition is enforced on the outer spatial domain boundary. How-

ever for open problems encountered in radiation and scattering, the issue of incorporating

an absorbing boundary condition (ABC) [32] at the outer domain boundary must be ad-

dressed. Without proper termination of the computational grid, outward traveling waves

from the structure will be artificially reflected by the grid truncation. For the time-parallel

algorithm, proper choice of an ABC is of critical importance. This arises from the fact that

the derivation of the scheme depends upon the fundamental assumption that all matrices

in Eqs. (2.3) and (2.4) are simultaneously diagonalizable. While this assumption holds for

conventional boundary conditions (i.e. Dirichlet, Neumann, Mixed, and Periodic), it is not

necessarily valid for all existing forms of ABCS.

In light of this fact, an ABC which is ccmsistent with the structure of the time-parallel al-
●9

gorithm involves solving the problem once for a Dirichlet and once for a Neumann boundary

condition at the outer domain boundary [33]. The results of the two computations are then

averaged to give the desired solution. This scheme not only maintains the diagonalizability

of Eq. (2.4) but also is highly suitable for parallel computation since the two solutions can

be performed in parallel. Recently, it has been reported that this technique provides satis-

factory results when applied to FDTD solution of Maxwell’s equations [34]. However, our

investigation has shown that while this ABC is effective for short time-stepping durations, it

suffers from inaccuracies when the run-time is long enough for multiple reflections to occur.

10



For this reason, additional research is underway to identify improved techniques for including

non-reflecting boundary conditions within the framework of the time-parallel algorithm.

3 Algorithm Implementation for a Circular Cylinder

Although the high-level structure of the time-parallel algorithm, as outlined in Section 2.3,

is the same for various applications, some of the details of the implementation may change

from problem to problem. In this section, we illustrate the method by applying it to the CN

solution of Maxwell’s equations for circular cylindrical geometries. The concepts illustrated

here can be used to compute the behavior of coaxial cavity configurations or the scattering

from circular cylinders depending on the choice of boundary conditions used. The key area

of emphasis in this demonstration involves determining the EE decomposition of M and

diagonalizing the resulting CN matrix equation.

3.1 Laplace  Operator in Polar Coordinates

Let pO and pl represent the radii of the cylinder and the edge of the finite computational

domain, as shown in Figure 2. In this case, the domain $2 of Eq. (2.2) is an annulus between

p. and pl. Also let @ represent E=, the 2-polarized electric field surrounding the circular

cylinder. The Laplace operator in polar coordinates is given by

(3.1)

The mesh points in the p-~ plane are defined by the points of intersection of the circles

P = iAp,  q – 1< i < p + 1, and the straight lines # = jA#, 1 ~ j ~ N, where Ad= 27r/N.

For simplicity, it is assumed that pO = (q -- l)Ap, pl = (p+ l)Ap and K = p – q + 1. Using

this notation along with the convention that @(iAp, jA@, mAt) = @$’), the five-point finite

difference approximation of Eq. (3. 1) becomes

V2#(i, j) =
*{(1 +“&’+’j+(l -i)@’-’J-

2[1+&~l@ij+(~:4)2(@ij+1+o’’-1)) (3.2)

11
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If the field scattered from the cylinder is to be computed, the boundary condition ~~~l,j =

–@’’c(pO, jA#, mAt) must be satisfied on the inner domain boundary, where E~c represents

the incident plane wave (assuming TM= incidence). In the CN matrix equation, this is

accomplished by using the source vector j’t~).

The vectors ~(’”) and @(m) c RKN, which are based on ordering the vector elements first

in the direction of p and then in the direction of #, are defined as

$(m) = COI{ffm)} and *(’I’) = col{t~’’’)}, q < i <P,
(3.3)

jfm) = col{j~jrn)} and ~~m) == Col{$$’)}, 1< j < lV.

An alternative representation of these vectors which will be used is based upon ordering first

in the direction of ~ and then in the direction of p, leading to the forms

j(m) = COl{f~m)} and ~(rn) == Col{ljjm)},  1 s j s ~,
(3.4)

~~m) = Col{f$”)} and +~m) == COl{@$’)},  q 5 i 5 p.

3.2 EE Decomposition: Dirichlet Boundary Condition

Using Eq. (3.2) with the Dirichlet boundary condition at the outer domain boundary, we

obtain a block tridiagonal matrix M given by

M = Tridiag [(1 – l/2i)J  Bi ( 1 +  l/2i)l] c RKNXKN. (3.5)

The submatrix Bi E RNXN is given by

●I B i = ~iB – 21 (3.6)

where pi= (1/iA#)2 and B is a N x N matrix given by

B =

–2 1 1
1 –2 1
. . .. . .. 1 .. .

[

1 –2 1
1 1 – 2 1

This specific structure of B results from the periodicity in +.

The following theorem is used in deriving the EE decomposition of M.

12

(3.7)



.

Theorem 1 The EE decomposition of the matrix  B is given by

B := FDF”l (3.8)

where F is the matrix of eigenvectors  and D = Diag{dj},  1 ~ j ~ N is the diagonal matrix

of eigenvalues  of B, with dj = –4 sin2[(j - l)n/N] (35, p. 255’].

The matrices F and F-l are the direct and inverse one dimensional Discrete Fourier

Transform (DFT) operators [35]. Thus, multiplication of any vector by these operators cor-

responds to performing a DFT operation which, by using fast techniques, can be performed

in O(N log N). From the definition in Eq. (3.6), it follows that Bi and B share the same set

of eigenvectors but have a different set of eigenvalues. In light of this, the EE decomposition

of Bi is given by

Bi = F~i~i-l (3.9)

where Ai = Diag{~i,j} =@iD–21,1~j<N, and

~i,j = /3idj  -2 =: --4~i sin2[(j – l)x/N] – 2. (3.10)

Let > = Diag{I’,  F’,..., F} and ~-l = Diag{F-l, F-l,..., F-l} c RKNXKN.  AIso,  COIW

sider a permutation matrix ~ E R‘NXKN which arises in the two dimensional DFT. Specif-

ically y, if we consider two vectors U and W ~ RN2 defined as U = {Ui,j} and W = {~i,j },

for 1< i, j < N, then U = PW implies that Ui,j = Wj,i. Note that 7-1 = @’ since ~ iS a

}’ permutation matrix and therefore is orthogonal.

Theorem 2 The EE decomposition of M is given by

M = FpQAgJ-~pTjr-l (3.11)

where A is the diagonal matrix of eigenvalues  ojM which, along with the matrix Q, is defined

below.

Proof  By using Eq. (3.9), the matrix M can be written as

M = Tridiag [(1 – l/2i)l F~iJ’--l (1+ 1/2~)~] = F~z-l (3.12)

13



where %3 is a block tridiagonal matrix given by

7?= Tridiag [(1 – l/2i)l ~i (1 + l/2i)l] . (3.13)

Since the block elements of 7? are diagonal, it can be transformed to a block diagonal matrix

T using

7?= PPT7?PPT := P(P%P)PT = PTPT (3.14)

where T is defined by

T = Diag{Tj}  c RKNXKN, 1 ~ j ~ N (3.15)

T j = Tridiag [(1 _ l/2i) Ai,j (1 + l/2i)] c RKXK, q ~ i ~ p . (3.16)

Let the EE decomposition of Tj be given by

Tj =, QjAjQ~l, (3.17)

Defining Q = Diag{Qj} and A = Diag{Aj},  1< j ~ N, it follows that

T== QAQ-~. (3.18)

Substituting Eq. (3.18) into Eq. (3.14) gives

Z = PTPT = PQAQ-~PT. (3.19)

The EE decomposition of M, given by 13q, (3.,11), follows from substituting Eq. (3.19) into
~“

Eq. (3.12). n

The matrix Tj is not symmetric. However, the products of pairs of the corresponding

off-diagonal elements are all nonzero and positive. In this sense, Tj is sign symmetric and

hence has real eigenvalues.  Due to this property, all the eigenvalues  and eigenvectors  of these

matrices can be e&cient/y  computed by using, for example, the subroutine RT provided by

EISPACK [36].

Multiplication of a vector by the matrix of eigenvectors Q~l corresponds to the solution

of a linear system involving a computational cost of 0(K3 ). However, following our discus-

sion in Section 2.3, a greater computational efficiency can be achieved by noting that Q;l

14



is the matrix of eigenvectors of matrix TIT. Therefore, if the EE decomposition of TjT is also

computed then the matrix Q~l is explicitly obtained and its multiplication by a vector rep-

resents a simple matrix-vector multiplication which can be performed with a computational

cost of O(K2 ). For typical values of K (of the order of 102), this scheme results in a two

order of magnitude improvement in the computational efficiency. As mentioned before, in

a parallel environment and with a suf%cient number of processors, the EE decomposition of

the matrices T,T can be performed in parallel with that of the matrices Tj without increasing

the overall computational cost.

3.3 EE Decomposition: Neumann 130undary Condition

We now consider the Neumann boundary condition at the outer domain boundary given by

$-4’(P+ l,j) = o. (3.20)

Extending the domain by introducing the fictitious points @p+z,j and using a centered dif-

ference scheme with second-order accuracy, the discretization of the Eq. (3.20) gives

Substituting Eq. (3.21) into Eq. (3.2) for i = p + 1, it follows that

(AP)2V2@(P  + l,j) = z~p,j – 2[1+ATJ ‘@P+ltj + (~~~)z(’h+l,j+l + ‘$p+l,j-1). (3.22)

1“
The matrix M arising from the discretization of the Laplace operator with the Neumann

boundary condition is then a block tridiagonal matrix expressed as

Bg [ 11+$1

[ 1l–q’&JI B~+l [l+& 1 I. . .. . I E RK’NXK’N (3.23). . .

[’-$1’ ‘p [ 1]1+* I
21 BP+l

M=

where K? = K+ 1. The similarities between the matrix M and the matrix M imply that the

process for computing the EE decomposition for both matrices is similar. To this end, we

15
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define the matrices $, Z-1, and ~ similar to the matrices 7, 7-1, and P but of dimension

K’N x K’N. The matrix M can be written as

fi = $7&-1 (3.24)

.
where R can be reduced to a block diagonal matrix using the transformation

12= @(PTk@)#T = +f@T. (3.25)

~ is the block diagonal matrix? = Diag{~’}, 1 S j S N, where

?j =

A 9 ,j 1+*
l–--J-- ‘9+li 1 +  2[~\1)

.—
2(q+l)
. .. . .. . .

I 1 * .Ap,j_ —.
2p 1+$

2 Ap+~,j

G RK’XK’ (3.26)

The matrix ?j is sign symmetric and, except for the last row, has the same structure as

the matrix T’j. Therefore, the eigenpairs of ~j can be eficientb COmPUted” Let the EE

decomposition of ~j be given by

pj ., QjAjQ;~, (3.27)

Defining @ = Diag{Qj} and ~ = Diag{~j}, 1< j < N, it follows that

? = QM-? (3.28)

Substituting Eqs. (3.25) and (3.28) into Eq. (3.24) gives
~“

il = F+ Qiww$’-? (3.29)

As before, it is more efficient to explicitly obtain the matrices Q;l by computing the EE

decomposition of matrices ~’.

3.4 Structure of the Algorithm for the Circular Cylinder

Appendix A provides a pseudo-code listing of the algorithm implementation for the circu-

lar cylinder which follows the steps outlined in Figure 1. Additionally, the flow charts in

Figures 3 and 4 illustrate how the different steps are computed by taking advantage of the

16

. I



“.

. .

.

factored forms of thematrices~  and S. l?igure 3showsthe determination of Q, Q-l, and

S = Diag{S1, S2,..., S~}infactored form from thematrices Tjand  T~. Figures 4(a),(b),

and (c) demonstrate how to use these factored matrices to perform the multiplications in

Steps 2, 3, and 4 respectively. These figures also imply that an additional level of parallelism

may be exploited in the computation, an issue which is explored more fully in Section 4.2.

Note that the SOILR in Figure 4(b) is given by

(3.30)~~~+1) = 2sjJ}m)  –  ~~m-l) +  fJm~l)

4 Algorithm Performance for the Circular Cylinder

4.1 Computational Complexity of the Time-Parallel Implementation

In analyzing the performance of the time-parallel algorithm, we assume that AJ processors

are available to fully exploit temporal parallelism. For typical values of M (of the order

of 103) and K and N (of the order of 102), we have J4 >> K and A4 >> N, Assuming

M z 2N, the EE decomposition of the 2N sign symmetric tridiagonal matrices Tj and T;,

1 s j ~ N, in Step 1 (Figure 3) can be computed in parallel at a cost of O(K2 ), which is the

cost required to decompose a single sign symmetric tridiagonal matrix. The computation

of the matrices Sj can be also performed in parallel with a cost of O(K). This leads to an

overall cost of O(K2) for Step 1.

The computations in Steps 2 and 4 are fully decoupled in time. Thus, with M processors,
J “ they can be computed in parallel for m = 2 to M, Referring to Figure 4(a), multiplication

by the matrix% involves K one dimensional DFTs, each with a cost of O(N log N), leading

to a total cost of O(KN log N). The N multiplications ~~m) = SjQ~l U.$~), 1 S j S N,

each involves a cost of O(K2), leading to a total cost of 0( K2N). Since Step 4 is virtually

identical to Step 2 in terms of computational complexity (see Figure 4(c)), the overall cost

for each step is O(lfN log N + K2N).

The SOILR in Eq, (2.8) involves vectors of dimension KN. With M processors and by

using RDA or CRA [30, 31], the cost of parallel solution of Eq. (2.8) is of O(KN log M).

Even assuming very large values for M (of the order of 105), the computational cost of Step
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3 is less than that of Steps 2 and 4. Additionally, by exploiting parallelism, the cost of Step

1 is less than that of Steps 2 and 4 (a secluential computation of Step 1 will lead to a cost

near] y equal to that of a parallel computation of Steps 2 and 4). Therefore, this represents

an example for which the overall computational cost of the time-parallel algorithm is mainly

determined by the costs of Steps 2 and 4 which are fully parallelizable in time. In light of

these arguments, the computational cost of the time-parallel algorithm while fully exploiting

temporal parallelism is given by

CTP = a1K
2N + a2KN log N + a3KN log M (4.1)

where al, a2, and as are constants and lower degree terms have been neglected.

4.2 Computational Complexity of the Time- and Space-Parallel Implementa-
tion

With the availability of a larger number of processors an additional level of parallelism –

spatial parallelism - can also be exploited in the computation. As mentioned in Section 3.4,

Figure 4 reveals the structure of the spatial parallelism in the computation.

For a time- and space-parallel computation we consider using ML processors where L =

Max(N; l-f). With this strategy, the computation of K one dimensional DFTs in Step 2 can

now be done in parallel with a cost of a single one dimensional DFT of O(N log N). The

remaining N matrix-vector multiplications in Step 2 can be performed in parallel with a cost

$“ of a single matrix-vector multiplication of 0(K2 ). Again, since Step 4 can be performed in a

similar fashion, the overall cost of each step is O(N log N + K2 ) for a time- and space-parallel

implement ation.

The computation of Eq. (2.8) in Step 3 can be decomposed into a set of decoupled SOILRS,

as indicated in Eq. (3.30) and Figure 4(b). Computing these SOILRS in parallel for j = 1 to

N and exploiting parallelism in each SOILR solution leads to a parallel computational cost

of O(K log M) for this step. Adding the costs of the different steps, the computational cost

of the time- and space-parallel implementation of the algorithm, denoted by CTSP, is then
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obtained as

CTSP = b1K2 + b2Nlog N + bJ< log M (4.2)

where bl, b2, and b are constants.

Interestingly, even the space-parallel implementation of Steps 2-4 results in a coarse grain

computation with a rather low communication complexity. The space-parallel computation

of Step 3 can be performed in a fully decoupled fashion with no communication requirement.

In this step, each processor performs the operations for parallel computation of its corre-

sponding SOILR on vectors of dimension K. In Steps 2 and 4, each processor performs an

FFT on vectors of dimension N and a multiplication of a K x K matrix by a K x 1 vector.

However, the permutations in Steps 2 and 4 require communication among processors in

the space-parallel computation. Consider Step 2 (Figure 4(a)) as an example and let N = K.

Before the permutation, each processor (e.g. processor i) computes the vector U~~).  If these

vectors are considered as the columns of a matrix U, then the permutation corresponds

to transposing U. In this case, processor i (which initially contained the ith column of

matrix 24) will receive the ith row of U ‘. The complexity of such a data communication is

a function of the processors interconnection structure. With K processors interconnected

through a Hypercube topology, the complexity of this matrix transposition is of O(K log K)

(see for example [37]). This implies that, with such interconnection topology, even the space-

parallel implementation of Steps 2 and 4 remains highly compute bound since its computation

}“ complexity of 0(K2 ) is greater than its communication complexity of O(K log K).

4.3 Computational Speedup

The speedup of the time-parallel and time- and space-parallel algorithms can be measured

with respect to the best sequential explicit method (Yee’s algorithm) and the best sequential

implementation of the CN method for the problem. The application of Yee’s algorithm to

the circular cylinder essentially requires a matrix-vector multiplication at each time step.

Because the KN x KN matrix involved in this operation is highly sparse, it can be shown

that the computational cost CSEY  of the sequential implementation of this algorithm is given
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CSEY = c1 M’KN (4.3)

where c1 is constant and M’ is the number of time steps required to achieve the same level of

accuracy as for the CN method. Due to the stability constraints, M’ may be much greater

than M. The speedup of the time-parallel implementation of our algorithm with respect to

the sequential implementation of Yee’s algorithm, denoted by SP1, is then given by

CSEY =
SPI =  —

CIM’KN c1 Ml

CTP
. (4.4)

a1K
2N + azKN  log N> aJ(N  log M = alK + az log N + aB log M

For practical values of K, N, and M, it is generally true that K > log N and K > log M.

Thus, SP1 can be approximated by

SPI =
c1 Ml
– —  =  O(M’/K).
al K

(4.5)

I The speedup of the time- and space-parallel implementation of our algorithm with respect

to the sequential implementation of Ycc’s algorithm is given by

(7CE7V-— cl M’KN c1 M ’
SP2 ====-=

CTSP b1K2 + bzN~og N + ba~ log M = blK/N  + b~(log N)/K + as(log M)/N
(4.6)

which, again, can be approximately given by

CsEy = ‘l”’ = o(M’N/K)sp2 .  — —.
CTSP blK/N

. (4.7)

i-
If O(K) = O(N), which is typically the case, then we have. . .

S P2 = O(M’). (4.8)

The sequential solution of Eq. (2.4) at each time step involves two vector additions, each

at a cost of O(KN),  and one matrix-vector multiplication to form the right-hand side vector.

By exploiting the structure of M, the matrix-vector multiplication can also be performed

with a cost of O(KN).  The solution vector +t~+l) is subsequently obtained by solving a

linear system. Since the matrices (1– aM) and M have a similar structure, this linear system

solution is equivalent to the solution of the Poisson equation in polar coordinates, which can.
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be performed using the Fast Poisson Solver [38, 39] with a complexity of O(KN log N). It

then follows that the cost of the best sequential algorithm for solution of Eq. (2.4), denoted

as  CscN, is  g iven by

Cs~N = dlMKN log N + dsMKN (4.9)

where dl and d2 are constants. The speedup of the time-parallel algorithm with respect to

the best sequential algorithm for computation of Eq. (2.4) is then given by

~p3 = ~scN = dlMKN log N + dsMKN dlMlog  N + d2M

CTP a1K2N  + a2KN log~ + a3KN log M = alK + az log N + aB log M

(4.10]

which can be approximately given by

dl M log N
S P 3  =  — — ” = O((M log N)/K).

alK
(4.11)

The speedup of the time- and space-parallel algorithm with respect to the best sequential

algorithm for computation of Eq. (2.4) is obtained as

CSCN =
SP4 =  —

dlMKN  log N dlM log N

CTSP blK2 + bsN log N + bJ{ log M—  =  alK/N + as(log N)/K + as(log M ) / N
(4.12)

which can be approximated as

SP4 = ‘;:~rN = O((MN  log N)/K). (4.13)

Again, assuming N and K to be of the same order, we have
$“

SP4 = O(M log N). (4.14)

Table 1 summarizes the asymptotic computational complexity of the serial and parallel

algorithms as well as the number of processors required. As can be seen from Eqs. (4.4)-

(4.14), the time-parallel and time- and space-parallel implementation of our algorithm leads

to a massive speedup in the computation while resulting in highly coarse grain parallel

computation with simple communication and synchronization requirements. For typical

values of M’ (of the order of 104), M (of the order of 103), and K and N (of the order

of 102), the time-parallel implementation of our algorithm leads to more than t wo orders
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Table 1: Comparison of serial and parallel algorithms
Algorithm Computational Complexity Number of Processors

Explicit (Yee’s) 0( A4’KN)
Serial

Implicit CN O(MKN log N)

Time-Parallel 0(l{2N) O(M)
Parallel

Time and Space-Parallel 0(1{’) O(ML)

of magnitude speedup in the computaticm over the best sequential explicit and implicit

methods. An even more impressive speedup is possible using the time- and space-parallel

implementation of the algorithm which, when used with a massive number of processors, is

several orders of magnitude faster than the best sequential algorithm.

It should be mentioned that the performance of the time-parallel algorithm increases for

problems demanding a much larger number of time steps. This follows from the fact that

time dependence occurs only in the computation of Step 3, with a dependency of O(log M),

while the dominant parts of the computation (Steps 2 and 4) are fully decoupled in time and

are therefore independent of M.

5 Generalization of Time-Pa.rallel Approach
~“

Provided that the matrix M is nonsingular, the diagonalization process of Section 2.2 can

be applied to the time-stepping procedures for solution of Maxwell’s equations. Hence, the

main issue in generalization of our approach is not the domain of applicability but rather

the computational efficiency. As indicated in Section 2.3, efficient application of the time-

parallel approach requires fast schemes for computing the eigenpairs of M and multiplying

the matrix of eigenvectors by a vector. In this section, we briefly discuss the implication of

these two factors for more general problems.
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5.1 Fast Computation of the Eigenpairsof M

Depending on the structure of the spatially determined matrix M, we have identified three

main techniques for the efficient computation of its eigenpairs. The first and second tech-

niques are specialized in that they take advantage of the specific structure of M while the

third technique is more gener~ since only the sparsity of M is exploited.

a. Analytical Expressions

For a few simple cases involving regular domains, an analytical expression for the eigen-

pairs of M is known a priori. Well-known examples are cases involving two and three
\ dimensional square and cubical domains. Additionally, we have found it possible to develop

expressions for some cases which have not been previously explored [28]. Because this ap-

proach zdlows extremely efficient application of the time-parallel approach, it is useful to

identify problems which can be solved in this fashion. Nevertheless, it appears that the

: domain of applicability for this appr.aemains quite limited.

b. A Divide and Conquer Method

The second technique can be considered as a divide and conquer approach which exploits

the specific structure of M. The task is to reduce the computation of eigenpairs  of M to the. .
computation of eigenpairs of a set of simpler matrices. Such a divide and conquer approach

was applied to the problem in Section 3. As shown in that derivation, this technique is

highly efficient with an optimal computational complexity for most cases. Because the EE
3’

decomposition for the set of matrices can be performed in parallel, this approach also offers

a high degree of coarse grain parallelism. Furthermore, the resulting matrix of eigenvectors

can be efficiently multiplied by a vector since it can be obtained as a product of sparse

matrices.

c. General Sparse Matrix Techniques

For problems where these methods can not be applied,

must be exploited to efficiently compute its eigenpairs [40].

the highly sparse structure of M

Howe’~er, it must be remembered

that we are not interested in explicit computation of the matrix o: eigenvectors but rather its

multiplication by a vector. Therefore, it is more efficient to obtai~ the matrix of eigenvectors
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in a factored form to improve the efficiency of this matrix-vector multiplication. This is a

clear departure from most conventional sparse eigenproblem  techniques wherein the explicit

computation of the matrix of eigenvectors is sought.

5.2 Efficient Matrix-Vector Multiplication

The importance of using efficient techniques for multiplying the matrix of eigenvectors O

by a vector is perhaps best understood by considering the problem solved in Section 3. For

this case, as can be seen from Eq. (3.11), @ is a full KN x l_N matrix, leading a cost of

O(K2N2) when it is multiplied by a vector. However, by computing @ in a factored form

rather than determining it explicitly, the cost of its multiplication by a vector is reduced

to 0( K2N). For a typical value of N (of the order of 102), this represents an improvement

of two orders of magnitude in computational efficiency, regardless of the degree to which

parallelism is exploited in this operation. Such a significant improvement in computational

efficiency motivates the identification of those techniques which allow determination of the

matrix of eigenvectors in a factored form.

6 Conclusion

In this paper, we have introduced a novel time-parallel approach for solving Maxwell’s equa-

tions using FDTD techniques. The algorithm provides a massive degree of coarse grain

parallelism with simple communication and synchronization requirements, Furthermore, in

contrast to previous work which has emphasized the use of explicit FDTD methods, this ap-

proach exploits the superior numerical properties of the implicit CN method. The application

of the algorithm to solution of a testbed problem has illustrated the massive speedup that

can be achieved by exploiting temporal and spatial parallelism. Work is currently underway

to implement the algorithm on the Touchstone Delta supercomputer for the circular cylinder

problem discussed in this paper. The results of this implementation will be presented in a

future correspondence.

In general, however, even the exploitation of full temporal parallelism alone requires a
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number of processors which, by far, exceeds that offered by the current generation of mas-

sively parallel MIMD architectures. Future generations of these architectures are expected

to employ many thousands of processors and to achieve a Teraflop computing capability.

Our preliminary results clearly point to a new direction in massively parallel CEM which

would enable efficient application of these future architectures to various CEM problems.

However, in order to achieve this goal, further research work is needed to extend the domain

of ef%cient”applicability of our approach. To this end, the discussion in Section 5 provides a

useful framework for further application of the time-parallel computing approach.
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A Structure of the Algorithm for the Circular Cylinder

Step 1. Compute the EE decomposition of M and Construct S
For j = 1 to N, Do&arallel

a. Compute the EE decomposition of Tj and TjT G RKXK
b. Compute Sj = (1 – ~Aj)-l

EndDolarallel
a “ Step 2. Compute Vectors $(~1

For m = 2 to M, Do_Parallel
a,

b,
c.

(~) = ~-if(m)Compute U1

For i = q to p, Dolarallel
u/p) = ~-lfp)

EndJlo_Parallel
(m) = ~~@~)Compute Uz

Compute j(’”) = SQ-lU~)

For j = 1 to N, Dolarallel
~(~) = SjQ~lU~~)

End_Dolarallel
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EndDo_Parallel
Step3. Compute@mJ

Solve in parallel the SOILR:

~(rn+l) = 2Sj(m) –.– j(rn-1) + f(m+l) ( A l )

This computation can besimplified bysolving Eq. (3.30 )in Parallel forj=l toN.
Step 4. Compute tj(m)

For m = 2 to M, Do-Parallel
a.

b.
c.

Compute W{m) = Q@m)
For j = 1 to N, Dolarallel

EndJlo_Parallel
(m) = ~W/rn)Compute Wz

Compute ~(m) = XW~m)
For i = q to p, Do-Parallel

?#@ = Jq@?)

End_Do_Parallel
End_Do_Parallel
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Figure 2: Geometry and gridding for the CN solution of Maxwell’s equations near a perfectly conducting
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